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SUMMARY

Tumor-specific pyruvate kinase M2 (PKM2) is essen-
tial for the Warburg effect. In addition to its well-
established role in aerobic glycolysis, PKM2 directly
regulates gene transcription. However, the mecha-
nism underlying this nonmetabolic function of
PKM2 remains elusive. We show here that PKM2
directly binds to histone H3 and phosphorylates
histone H3 at T11 upon EGF receptor activation.
This phosphorylation is required for the dissociation
of HDAC3 from the CCND1 and MYC promoter
regions and subsequent acetylation of histone H3
at K9. PKM2-dependent histone H3 modifications
are instrumental in EGF-induced expression of cyclin
D1 and c-Myc, tumor cell proliferation, cell-cycle
progression, and brain tumorigenesis. In addition,
levels of histone H3 T11 phosphorylation correlate
with nuclear PKM2 expression levels, glioma malig-
nancy grades, and prognosis. These findings high-
light the role of PKM2 as a protein kinase in its
nonmetabolic functions of histone modification,
which is essential for its epigenetic regulation of
gene expression and tumorigenesis.

INTRODUCTION

As noted by Warburg in the 1920s, tumor cells, unlike their

normal differentiated counterparts, have elevated rates of

glucose uptake and lactate production in the presence of

oxygen. This phenomenon, known as aerobic glycolysis or the

Warburg effect, allows tumor cells to function like fetal cells

and to use a large fraction of glucose metabolites to synthesize

macromolecules (such as amino acids, phospholipids, and

nucleic acids), which support tumor cell growth (Cairns et al.,
2011; Hsu and Sabatini, 2008; Koppenol et al., 2011; Vander

Heiden et al., 2009).

Pyruvate kinase regulates the final rate-limiting step of glycol-

ysis, which catalyzes the transfer of a phosphate group from

phosphoenolpyruvate (PEP) to adenosine diphosphate (ADP),

yielding one molecule of pyruvate and one molecule of

adenosine triphosphate (ATP) (Altenberg and Greulich, 2004;

Majumder et al., 2004). Four pyruvate kinase isoforms (M1,

M2, L, and R) exist in mammals and are expressed in different

types of cells and tissues. The pyruvate kinase M1 (PKM1) and

M2 (PKM2) isoforms result from mutually exclusive alternative

splicing of the PKM2 premessenger ribonucleic acid (pre-

mRNA), reflecting the inclusion of either exon 9 (PKM1) or exon

10 (PKM2), respectively (Noguchi et al., 1986).

Human PKM2 is expressed in fetal tissues and is progressively

replaced by the other three isozymes after birth. In human cancer

cells, PKM2 expression is upregulated (Dombrauckas et al.,

2005; Mazurek, 2007; Mazurek et al., 2005). Replacing PKM2

with PKM1 in human lung cancer cells inhibits theWarburg effect

and tumor formation in nude mouse xenografts (Christofk et al.,

2008a). Under hypoxic conditions, hypoxia-inducible factor 1a

interacts with prolyl hydroxylase 3 and PKM2 to stimulate trans-

activation of glycolytic genes that promote glucose metabolism

in cancer cells (Luo et al., 2011).

In addition to its well-known role in glycolysis, PKM2 regulates

proliferation and apoptosis of nontransformed cells in a cell-

type-specific manner by largely unknown mechanisms (Hoshino

et al., 2007; Lee et al., 2008; Steták et al., 2007). PKM2 binds

directly and selectively to tyrosine (Tyr, Y)-phosphorylated

peptides, and expression of the phosphotyrosine-binding

form of PKM2 is required for the rapid growth of cancer cells

(Christofk et al., 2008b). Our recent findings revealed that activa-

tion of epidermal growth factor (EGF) receptor (EGFR), which has

been reported in many human tumors (Moscatello et al., 1995;

Nicholson et al., 2001; Wykosky et al., 2011), results in the trans-

location of PKM2, but not of PKM1, into the nucleus, where

PKM2 binds to c-Src-phosphorylated Y333 of b-catenin (Yang
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Figure 1. EGF-Induced and PKM2-Dependent Phosphorylation of Histone H3 at T11 Is Required for Acetylation of Histone H3 at K9
Immunoprecipitation and immunoblotting analyses were performed with the indicated antibodies.

(A) U87/EGFR cells expressing Flag-tagged WT H3, H3-K4R, and K9R were treated with or without EGF (100 ng/ml) for 6 hr.

(B and F) U87/EGFR and U251 cells expressing a control or PKM2 shRNAwere treated with or without EGF (100 ng/ml) for 6 hr. Endogenously expressed histone

H3 was examined. Data represent the mean ± SD of three independent experiments (F).

(C) U87/EGFR were treated with or without EGF (100 ng/ml) or 20% serum with calyculin A (25 nM) for 6 hr.

(D) U87/EGFR cells with or without expressing PKM2 shRNA were treated with or without EGF (100 ng/ml) for 6 hr. Endogenously expressed histone H3 was

immunoprecipitated.

(E) U87/EGFR cells expressing Flag-tagged WT H3, H3-T3A, H3-T6A, and H3-T11A were treated with or without EGF (100 ng/ml) for 6 hr.

(G) U87/EGFR cells expressing Flag-tagged WT H3 or H3-T11A were treated with or without EGF (100 ng/ml) for 6 hr.

(H) U87/EGFR cells expressing a control shRNA or shRNA against Chk1, DAPK3, or PKN1 mRNA were analyzed by immunoblotting analysis with the indicated

antibodies.

(I) U87/EGFR cells expressing a control shRNAor shRNA against Chk1, DAPK3, or PKN1mRNAwere treatedwith or without EGF (100 ng/ml) for 6 hr and analyzed

by immunoblotting analysis with the indicated antibodies.

See also Figures S1, S2, S3, and S4.
et al., 2011). The interaction between PKM2 and b-catenin is

required for this protein complex to bind to theCCND1 (encoding

for cyclin D1) promoter, where PKM2 kinase activity is essential

for the dissociation of histone deacetylase 3 (HDAC3) from the

promoter, for histone H3 acetylation, and for cyclin D1 expres-

sion (Lu, 2012; Yang et al., 2011). This study clearly demon-

strates that PKM2 directly regulates cell-cycle progression by

controlling cyclin D1 expression, but the mechanism underlying

PKM2-regulated histone H3 modification, which activates gene

transcription, is unknown.

In this report, we show that EGFR activation results in a direct

interaction between PKM2 and histone H3. PKM2 phosphory-

lates histone H3 at threonine (Thr, T) 11, which is required for

histone H3 acetylation at lysine (Lys, K) 9 and the subsequent
686 Cell 150, 685–696, August 17, 2012 ª2012 Elsevier Inc.
expression of cyclin D1 and c-Myc, cell proliferation, and

tumorigenesis.

RESULTS

EGF-Induced and PKM2-Dependent Phosphorylation
of Histone H3 at T11 Is Required for Acetylation
of Histone H3 at K9
We previously showed that EGFR activation results in PKM2-

dependent acetylation of histone H3, which was detected by

an anti-acetylated histone H3 antibody recognizing acetylated

K4 and K9 (Yang et al., 2011) (Figure 1A). To identify the Lys

residue in histone H3 acetylated upon EGFR activation, we ex-

pressed Flag-tagged K4R or K9R mutants of histone H3, in



which the individual lysine was mutated into arginine, in U87/

EGFR human glioblastomamultiforme (GBM) cells. Immunoblot-

ting analysis with an anti-acetylated H3 antibody showed that

histone H3 K9R, but not histone H3 K4R, was resistant to

acetylation induced by EGF stimulation (Figure 1A). In addition,

histone H3 K9R mutation abrogated EGF-induced H3-K9

acetylation recognized by a specific H3-K9 acetylation antibody

(Figure 1A). shRNA-induced depletion of PKM2 in U87/EGFR

and/or U251 GBM cells (Figure 1B, left) blocked EGF-induced

H3-K9 acetylation, as detected by immunoblotting analysis

(Figure 1B, right), which was further supported by liquid chroma-

tography-coupled mass spectrometric (LC-MS/MS) analyses of

a tryptic digest of immunoprecipitated endogenous histone H3

(Figure S1 available online). These results indicate that PKM2

is required for EGF-induced H3-K9 acetylation.

Histones can undergo several different posttranslational modi-

fications, including acetylation, phosphorylation, methylation,

and ubiquitylation. Histone modifications can influence one

another, such that onemodification is required for the generation

of a different modification for subsequent gene transcription

regulation (Lee et al., 2010; Suganuma and Workman, 2008).

Given that phosphorylation of a histone H3 serine or threonine

residue can lead to acetylation of its adjacent Lys (Baek, 2011;

Pérez-Cadahı́a et al., 2009; Shimada and Nakanishi, 2008;

Shimada et al., 2008), we next examined whether EGF induces

histone H3 phosphorylation, which may be essential for H3-K9

acetylation. Immunoblotting analyses of immunoprecipitated

histone H3 with antibodies for phosphothreonine, phosphoser-

ine, or phosphohistone H3-S10 showed that EGFR activation

increased total levels of phosphorylated threonine (Figure 1C);

however, EGF stimulation, unlike treatment with serum and

calyculin A (a serine/threonine phosphatase inhibitor), failed to

increase total levels of phosphorylated serine or S10 in histone

H3. Of note, PKM2 depletion prevented EGF-induced Thr

phosphorylation of histone H3 (Figure 1D). Mutation of T3, T6,

and T11 of histone H3, which lie close to K9, into alanine

(Ala, A) showed that the H3-T11A mutant, but not the H3-T3A

or H3-T6A mutant, was resistant to Thr phosphorylation induced

by EGF stimulation (Figure 1E). Furthermore, EGF-induced H3-

T11 phosphorylation, detected with a phospho-H3-T11-specific

antibody, was reduced similarly by depletion of both PKM1 and

PKM2 (Figure S2) and depletion of PKM2 alone (Figure 1F),

indicating that PKM2 specifically regulates H3-T11 phosphoryla-

tion. Immunoblotting analyses of immunoprecipitated wild-type

(WT) Flag-histone H3 and Flag-histone H3-T11A with an anti-

acetylated H3-K9 antibody showed that the T11Amutation abro-

gated EGF-induced histone H3 acetylation at K9 (Figure 1G)

without affecting the status of K36 trimethylation (Figure S3).

These results, which are in line with a previous finding that H3-

T11 phosphorylation is required for K9 acetylation (Shimada

and Nakanishi, 2008), indicate that PKM2-dependent H3-T11

phosphorylation primes K9 acetylation upon EGFR activation.

Chk1 (Shimada et al., 2008), death-associated protein (DAP)-

like kinase (Dlk, also termed DAPK3 and ZIPK) (Preuss et al.,

2003), and protein-kinase-C-related kinase 1 (PRK1/PKN1)

(Metzger et al., 2008) are reported to phosphorylate H3-T11.

To examine the potential involvement of these protein kinases

in EGF-regulated H3-K9 acetylation, we expressed a control
shRNA or shRNA against Chk1, DAPK3, or PKN1 (encoding

PRK1) mRNA in U87/EGFR (Figure 1H) or U251 (Figure S4A)

cells. As shown in Figures 1I and S4B, depletion of mRNA

expression of Chk1, DAPK3, and PKN1 did not affect EGF-

induced H3-T11 phosphorylation, further supporting the finding

that PKM2 specifically regulates H3-T11 phosphorylation and

subsequent H3-K9 acetylation upon EGFR activation.

PKM2 Directly Interacts with Histone H3
and Phosphorylates H3-T11
To further determine the relationship between PKM2 and phos-

phorylation of H3-T11, we examined the interaction between

these two proteins. Pull-down analyses by mixing purified

recombinant His-PKM2 on nickel agarose beads with purified

recombinant histone H3 or histone H2A showed that PKM2

directly bound to histone H3, but not to histone H2A (Figure 2A).

Immunoblotting analyses of immunoprecipitated endogenous

histone H3 with an anti-PKM2 antibody showed that EGF stimu-

lation resulted in increased binding of PKM2 to histone H3 (Fig-

ure 2B). These results indicate that PKM2 interacts with histone

H3 both in vitro and in cells.

We next examined whether histone H3 might be directly

phosphorylated by the catalytic activity of PKM2. An in vitro

phosphorylation analysis using ATP as the phosphate group

donor did not detect any histone H3 phosphorylation by

recombinant PKM2, as detected by immunoblotting with

an anti-phospho-Thr antibody or a phospho-H3-T11-specific

antibody. However, incubation of PKM2 with histone H3 in the

presence of PEP, the physiological phosphate group donor of

PKM2, showed that WT PKM2, but not PKM2 K367M kinase-

dead mutant (Yang et al., 2011) or PKM1, phosphorylated WT

histone H3, but not H3-T11A (Figures 2C and S5A), although re-

combinant PKM2 K367M and PKM1 were able to interact with

histone H3 (Figure S5B). 0.5 mM PEP, which is in the range of

the physiological concentrations of PEP (Williamson et al.,

1966), was used in the reaction to mimic in vivo conditions.

The phosphorylation of histone H3 was further validated by

LC-MS/MS analyses, showing that H3-T11, but not H3-S10, is

a residue phosphorylated by PKM2 (Figure 2D). Furthermore, re-

constituted expression of RNAi-resistant inactive rPKM2 K367M

mutant, unlike the re-expression of its WT counterpart (WT

rPKM2), in endogenous PKM2-depleted U87/EGFR cells (Fig-

ure 2E) failed to rescue EGF-induced H3-T11 phosphorylation

or H3-K9 acetylation (Figure 2F). Intriguingly, reconstituted

expression of a PKM2 K433E mutant, which loses its binding

ability to tyrosine-phosphorylated proteins, including b-catenin,

and promoter regions such as CCND1 and MYC (Christofk

et al., 2008b; Yang et al., 2011) also largely failed to restore

EGF-induced H3-T11 phosphorylation or H3-K9 acetylation

(Figures 2E and 2F). These results indicate that PKM2 directly

binds to histone H3 and phosphorylates histone H3 at T11, which

is required for subsequent H3-K9 acetylation.

PKM2-Dependent H3-T11 Phosphorylation Promotes
the Disassociation of HDAC3 from CCND1 and MYC

Promoter
We previously showed that the binding of PKM2 to the CCND1

promoter is required for the dissociation of HDAC3 from the
Cell 150, 685–696, August 17, 2012 ª2012 Elsevier Inc. 687



Figure 2. PKM2 Directly Interacts with

Histone H3 and Phosphorylates H3-T11

Immunoprecipitation and immunoblotting anal-

yses were performed with the indicated anti-

bodies.

(A) Pull-down analyses were performed by mixing

purified immobilized His-PKM2 on nickel agarose

beads with purified nontagged recombinant

histone H3 or histone H2A.

(B) U87/EGFR cells were treated with or without

EGF (100 ng/ml) for 6 hr.

(C) In vitro phosphorylation was analyzed by

mixing recombinant WT PKM2, PKM2 K367M, or

PKM1 with purified recombinant WT H3 or H3-

T11A in the presence of PEP or ATP.

(D) Purified recombinant His-histone H3 was

phosphorylated by PKM2 in vitro and was

analyzed by mass spectrometry. Mass spectro-

metric analysis of a tryptic fragment at m/z

533.258 (mass error was �0.98 ppm) matched to

the doubly charged peptide 9-KSTGGKAPR-17,

suggesting that T11 was phosphorylated. The

Sequest score for this match was Xcorr = 2.74;

Mascot scores were 46, expectation value 5.1 3

10-4. The pRS score was 116, and site probability

was 99.1%. The presence of the b2
+ ion at

258.2 indicates that the S10 residue is unmodified;

the presence of the y7
+ at 808.2 is in agreement

with the assignment of the phosphorylation site

to T11.

(E and F) U87/EGFR cells expressing PKM2

shRNA were reconstituted by the expression of

WT rPKM2, rPKM2 K367M, or rPKM2 K433E (E)

and were treated with or without EGF (100 ng/ml)

for 6 hr (F).

See also Figure S5.
promoter (Yang et al., 2011). To examine whether PKM2-regu-

lated H3-K9 acetylation is mediated by HDAC3 dissociation

from the CCND1 promoter, which, in turn, requires prior H3-

T11 phosphorylation, we performed chromatin immunoprecipi-

tation (ChIP) analyses with an HDAC3 antibody. As shown in

Figure 3, reconstituted expression of RNAi-resistant histone

rH3-T11A, compared with re-expression of its WT counterpart

in endogenous histone-H3-depletedU87/EGFR cells (Figure 3A),

blocked EGF-induced HDAC3 dissociation from theCCND1 and

MYC promoters (Figure 3B). (The histone-H3-depleted U87/

EGFR cell line without reconstituted H3 expression was not

stable, and H3 expression in these cells recovered after pro-

longed cultures; these cells were not used for further experi-

ments.) To further support the finding that PKM2-dependent

H3-T11 phosphorylation promotes the dissociation of HDAC3

from histone H3, we performed in vitro binding analyses by

mixing purified recombinant GST-HDAC3 on agarose beads

and purified recombinant WT histone H3 or histone H3-T11A

mutant, which was followed by incubation with or without

purified recombinant WT PKM2 or PKM2 K367M mutant in

a PEP-containing kinase buffer. As shown in Figure 3C, GST-
688 Cell 150, 685–696, August 17, 2012 ª2012 Elsevier Inc.
HDAC3 interacted with both WT histone H3 and histone H3-

T11A. Intriguingly, the presence of WT PKM2, but not of PKM2

K367M, resulted in the dissociation of HDAC3 from WT histone

H3, but not from histone H3-T11A. In addition, preincubation

of histone H3 with recombinant PKM2 in the presence or

absence of PEP before incubating with GST-HDAC3 showed

that histone H3 phosphorylated by PKM2 lost its ability to

interact with HDAC3 (Figure S5C). These results indicate that

PKM2-dependent H3-T11 phosphorylation promotes HDAC3

dissociation from histone H3 and facilitates subsequent H3-K9

acetylation.

PKM2-Dependent H3-T11 Phosphorylation Promotes
EGF-Induced Expression of Cyclin D1 and c-Myc
EGFR activation results in complex formation between PKM2

and b-catenin, which leads to binding of the complex to the

CCND1 and MYC promoter regions and subsequent histone

H3 acetylation at the promoters (Yang et al., 2011). To determine

whether PKM2 regulates cyclin D1 and c-Myc expression via

modulating H3-T11 phosphorylation at the promoter regions,

we performed ChIP analyses with anti-phospho-H3-T11. As



Figure 3. PKM2-Dependent H3-T11 Phos-

phorylation Promotes the Disassociation

of HDAC3 from CCND1 and MYC Promoter

Immunoblotting analyses were performed with the

indicated antibodies.

(A and B) WT rH3 or rH3-T11A expression was

reconstituted in endogenous H3-depleted U87/

EGFR cells (A), which were then treated with or

without EGF (100 ng/ml) for 6 hr. ChIP analyses

with a HDAC3 antibody were performed (B).

(C) GST-HDAC3 pull-down assay was performed

by incubation of 100 ng of purified recombinant

His-tagged WT histone H3 or H3-T11A mutant with or without immobilized GST-HDAC3, which was followed by incubation with 200 ng of purified

recombinant WT His-PKM2 or His-PKM2 K367M in the presence of PEP.

See also Figure S5.
shown in Figure 4A, EGF treatment resulted in enhanced

H3-T11 phosphorylation at the CCND1 promoter, which was

prevented by PKM2 depletion. Reconstituted expression of

RNAi-resistant rPKM2 K367M in U87/EGFR cells (Figure 2E),

unlike its WT counterpart, failed to rescue EGF-induced H3-

T11 phosphorylation at the CCND1 promoter (Figure 4A).

Given that WT PKM2 and PKM2 K367M have comparable

affinity for CCND1 promoter regions (Yang et al., 2011), these

results indicate that the kinase activity of PKM2 is required

for EGF-induced H3-T11 phosphorylation at the CCND1

promoter.

We next investigated the significance of H3-T11 phosphoryla-

tion in EGF-induced cyclin D1 and c-Myc expression by

reconstituting the expression of WT histone rH3 and histone

rH3-T11A in endogenous histone-H3-depleted U87/EGFR

(Figure 3A). Immunoblotting analyses of immunoprecipitated

Flag-tagged histone H3 with an anti-PKM2 antibody showed

that Flag-tagged histone H3-T11A, acting like its WT counter-

part, binds to PKM2 upon EGF stimulation (Figure 4B). ChIP

analyses with a PKM2 antibody demonstrated that PKM2

binds to CCND1 promoter regions to a similar degree in the

cells with reconstituted expression of WT histone rH3 and

histone rH3-T11A (Figure 4C). However, reconstituted expres-

sion of histone rH3-T11A blocked EGF-induced H3-K9 acetyla-

tion at CCND1 and MYC promoter regions in both U87/EGFR

(Figure 4D) and U251 cells (Figure S6A), as demonstrated

by ChIP analyses with an anti-acetylated H3-K9 antibody.

In addition, rH3-T11A expression abrogated EGF-enhanced

mRNA levels ofCCND1 andMYC (Figure 4E), H3-K9 acetylation,

and expression of cyclin D1 and c-Myc in both U87/EGFR (Fig-

ure 4F) and U251 (Figure S6B) cells. Furthermore, reconstituted

expression of rH3-K9R blocked EGF-induced expression of

cyclin D1 and c-Myc at both mRNA and protein expression

levels (Figures 4E, 4F, and S6B). In line with our previous

finding that PKM2 kinase activity is required for EGF-induced

cyclin D1 expression (Yang et al., 2011), reconstituted expres-

sion of PKM2 K367M, compared with re-expression of its WT

counterpart in U87/EGFR cells with depleted endogenous

PKM2 (Figure 2E), blocked EGF-induced c-Myc expression

(Figure 4G). These results indicate that PKM2 phosphory-

lates H3-T11 at CCND1 and MYC promoter regions, which is

required for subsequent H3-K9 acetylation and transcription of

the genes.
PKM2-Dependent H3-T11 Phosphorylation Is Required
for Cell-Cycle Progression, Cell Proliferation, and
Tumorigenesis
Cyclin D1 expression is required for the G1-S phase transition

(Resnitzky and Reed, 1995). To examine whether PKM2-depen-

dent H3-T11 phosphorylation, which promotes cyclin D1 expres-

sion, regulates the G1-S phase transition, we reconstituted

the expression of RNAi-resistant WT histone rH3 or rH3-T11A

in endogenous histone-H3-depleted U87 cells expressing a

constitutively active EGFRvIII mutant (Figure 5A). As shown in

Figure 5B, expression of histone rH3-T11A, compared with

expression of WT histone rH3, resulted in accumulation of

U87/EGFRvIII cells in the G0/G1 phase, as determined by flow

cytometric analyses. In addition, expression of histone rH3-

T11A, in contrast to expression of its WT counterpart, inhibited

cell proliferation (Figure 5C). The inhibitory effect on cell-cycle

progression and cell proliferation was also observed by deple-

tion of both PKM1 and PKM2 (Figures S7A, S7B, and S7C) or

depletion of PKM2 alone (Figures 5B and 5C) (Yang et al.,

2011). These results strongly suggest that PKM2-dependent

H3-T11 phosphorylation is required for cell-cycle progression

and cell proliferation.

Depletion of both PKM1 and PKM2 (Figure S7D) or PKM2

alone (Yang et al., 2011) abrogated brain tumorigenesis induced

by intracranial injection of U87/EGFRvIII cells. To determine the

role of PKM2-dependent H3-T11 phosphorylation in brain tumor

development, we intracranially injected endogenous histone-

H3-depleted U87/EGFRvIII cells with reconstituted expression

of WT histone rH3 or histone rH3-T11A mutant. U87/EGFRvIII

cells expressing WT histone rH3 elicited rapid tumorigenesis

(Figure 5D). In contrast, histone rH3-T11A expression abrogated

EGFRvIII-driven tumor growth. In addition, the levels of phos-

phorylated histone H3 at T11 were higher in the tumor tissue

derived from the mice injected with U87/EGFvIII cells with

reconstituted expression of WT histone H3 than in the counter-

part tissue derived from the mice injected with U87/EGFvIII

cells with reconstituted expression of histone H3 T11A (Fig-

ure 5E). Similar tumorigenesis results were obtained by using

GSC11 human primary GBM cells with endogenous histone H3

depletion and reconstituted expression of WT histone rH3

or rH3-T11A (Figures 5F and 5G). These results indicate that

PKM2-dependent H3-T11 phosphorylation is instrumental in

EGFR-promoted tumor development.
Cell 150, 685–696, August 17, 2012 ª2012 Elsevier Inc. 689



Figure 4. PKM2-Dependent H3-T11 Phosphorylation Promotes EGF-Induced Expression of Cyclin D1 and c-Myc

Immunoprecipitation, immunoblotting, and ChIP analyses were performed with the indicated antibodies.

(A) U87/EGFR cells with or without depletion of endogenous PKM2 and reconstituted expression ofWT rPKM2 or rPKM2 K367Mwere treatedwith or without EGF

(100 ng/ml) for 10 hr.

(B) 293T cells with or without expressing Flag-tagged WT H3 or H3-T11A were treated with EGF (100 ng/ml) for 6 hr.

(C and D) U87/EGFR cells with depleted endogenous histone H3 and reconstituted expression of WT rH3 or rH3-T11A were treated with or without EGF

(100 ng/ml) for 10 hr. ChIP analyses were performed with an anti-PKM2 (C) or an anti-acetyl-H3K9 antibody (D).

(E) Quantitative real-time polymerase chain reaction (PCR) was performed with specific primers for CCND1 (left) or MYC mRNA (right). Data represent the

mean ± SD of three independent experiments.

(F) U87/EGFR cells with depleted endogenous histone H3 and reconstituted expression of WT rH3, rH3-T11A, or rH3-K9R were treated with or without EGF

(100 ng/ml) for 6 hr for detection of H3 acetylation or for 24 hr for examination of cyclin D1 and c-Myc expression.

(G) U87/EGFR cells with endogenous PKM2 depletion and reconstituted expression of WT rPKM2 or rPKM2 K367Mwere treated with or without EGF (100 ng/ml)

for 24 hr.

Please also see Figure S6.
H3-T11 Phosphorylation Positively Correlates with the
Level of Nuclear PKM2 Expression and with Grades
of Glioma Malignancy and Prognosis
The nuclear expression level of PKM2 correlates with poor GBM

prognosis (Yang et al., 2011). To further define the clinical rele-

vance of our finding that nuclear PKM2 phosphorylates H3-T11

upon EGFR activation, we used IHC analyses to examine the

activity levels of EGFR reflected by their phosphorylation levels,

H3-T11 phosphorylation, and PKM2 nuclear localization in serial

sections of 45 human primary GBM specimens (World Health

Organization [WHO] grade IV). The antibody specificities were
690 Cell 150, 685–696, August 17, 2012 ª2012 Elsevier Inc.
validated by using IHC analyses with specific blocking peptides

(data not shown). As shown in Figure 6A, levels of H3-T11 phos-

phorylation, nuclear PKM2 expression, and EGFR activity were

correlated with each other. Quantification of the staining on

a scale of 0 to 8.0 showed that these correlations were significant

(Figure 6B).

We compared survival durations of 85 patients, all of whom

received standard adjuvant radiotherapy after surgery, followed

by treatment with an alkylating agent (temozolomide in most

cases), with low (0–4 staining) versus high (4.1–8 staining) H3-

T11 phosphorylation. Patients whose tumors had low H3-T11



Figure 5. PKM2-Dependent H3-T11 Phosphorylation Is Required for Cell-Cycle Progression, Cell Proliferation, and Tumor Development

(A) WT rH3 or rH3-T11A expression was reconstituted in U87/EGFRvIII cells with depleted endogenous H3. Immunoblotting analyses were performed with the

indicated antibodies.

(B) U87/EGFRvIII cells with depleted PKM2 or endogenous H3 and reconstituted expression of WT rH3 or rH3-T11A were stained with propidium iodide and

analyzed for DNA staining profiles by flow cytometry. Data represent the mean ± SD of three independent experiments.

(C) A total number of 2 3 104 U87/EGFRvIII cells with depleted PKM2 or endogenous H3 and reconstituted expression of WT rH3 or rH3-T11A were plated and

counted 7 days after seeding in DMEM with 2% bovine calf serum. Data represent the mean ± SD of three independent experiments.

(D–G) A total of 53 105 endogenous histone-H3-depleted U87/EGFRvIII (D and E) or GSC11 (F and G) cells with reconstituted expression of WT rH3 or rH3-T11A

were intracranially injected into athymic nudemice for each group. The mice were sacrificed and examined for tumor growth. H&E-stained coronal brain sections

show representative tumor xenografts. Tumor volumes were measured by using length (a) and width (b) and were calculated using the equation: V = ab2/2. Data

represent the means ± SD of seven mice.

(E) Immunoblotting analysis with anti-phospho-H3-T11 antibody was performed on lysates of the tumor tissue derived from the mice injected with U87/EGFvIII

cells with reconstituted expression of WT histone H3 and the counterpart tissue derived from the mice injected with U87/EGFvIII cells with reconstituted

expression of histone H3 T11A mutant.

(F) WT rH3 or rH3-T11A expression was reconstituted in GSC11 cells with depleted endogenous H3. Immunoblotting analyses were performed with the indicated

antibodies.

Please also see Figure S7.
phosphorylation (16 cases) had a median survival that was

not reached; those whose tumors had high levels of H3-T11

phosphorylation (69 cases) had a significantly lower median

survival duration of 77 weeks. In a Cox multivariate model,

the IHC score of H3-T11 phosphorylation (Figure 6C, p =

0.013490) was an independent predictor of GBM patient

survival after adjusting for patient age, which is a relevant

clinical covariate. These results support a role for PKM2-depen-

dent H3-T11 phosphorylation in the clinical behavior of human

GBM and reveal a relationship between H3-T11 phosphorylation
and clinical aggressiveness of the tumor. To further explore this

relationship, we examined whether the levels of H3-T11 phos-

phorylation correlated with the grades of glioma malignancy.

Levels of H3-T11 phosphorylation in samples from patients

(30 cases) with low-grade diffuse astrocytoma (WHO grade II;

median survival time > 5 years) were compared with those

from patients with high-grade GBM (Furnari et al., 2007). IHC

analysis showed significantly lower levels of H3-T11 phosphory-

lation in low-grade tumors than were present in GBM specimens

(Figure 6D).
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Figure 6. H3-T11 Phosphorylation Posi-

tively Correlates with the Level of Nuclear

PKM2 Expression and with Grades of

Glioma Malignancy and Prognosis

(A and B) Immunohistochemical staining with anti-

phospho-EGFR Y1172, anti-phospho-H3-T11,

and anti-PKM2 antibodies was performed on 45

GBM specimens. Representative photos of four

tumors are shown (A). Semiquantitative scoring

was performed (Pearson product moment corre-

lation test; r = 0.704, p < 0.0001, left; r = 0.86, p <

0.001, right). Note that some of the dots on the

graphs represent more than one specimen (some

scores overlapped) (B).

(C) The survival times for 85 patients with low (0–4

staining scores, blue curve) versus high (4.1–8

staining scores, red curve) H3-T11 phosphoryla-

tion (low, 16 patients; high, 69 patients) were

compared. The table (top) shows the multivariate

analysis after adjustment for patient age, indi-

cating the significance level of the association of

H3-T11 phosphorylation (p = 0.01349038) with

patient survival. Empty circles represent deceased

patients, and filled circles represent censored

(alive at last clinical follow-up) patients.

(D) Thirty diffuse astrocytoma specimens were

immunohistochemically stained with anti-phos-

pho-H3-T11 antibody, and specimens were

compared with 45 stained GBM specimens

(Student’s t test, two tailed, p < 0.001). Data

represent the mean ± SD of 30 stained astrocy-

toma specimens and 45 stained GBM specimens.
DISCUSSION

PKM2, a glycolytic enzyme with a key role in the Warburg effect

(Christofk et al., 2008a; Mellati et al., 1992), also processes non-

metabolic functions and plays a critical role in regulating gene

transcription (Yang et al., 2011). However, the mechanisms

underlying PKM2-regulated transcriptional control of gene

expression are not known. In this report, we demonstrate that

PKM2, functioning as a protein kinase, interacts with histone

H3 and phosphorylates H3-T11, which leads to HDAC3 removal

fromCCND1 andMYC promoter regions and subsequently to K9

acetylation and gene transcription.

These findings, together with those from previous reports,

significantly enrich our understanding of the physiological role
692 Cell 150, 685–696, August 17, 2012 ª2012 Elsevier Inc.
of PKM2 in tumor development by

revealing its two integrated functions. (1)

PKM2 acts as a glycolytic enzyme, trans-

ferring a phosphate group from PEP to

ADP for ATP generation and pyruvate

production. It is also a rate-limiting

controller of glycolysis that is needed

for generation of glucose metabolites to

synthesize amino acids, phospholipids,

and nucleic acids, which are building

blocks for cell growth and cell prolifera-

tion (Hsu and Sabatini, 2008; Koppenol

et al., 2011; Vander Heiden et al., 2009).
(2) PKM2 acts as a protein-kinase-phosphorylating histone for

gene transcription, which directly controls cell-cycle progression

and cell proliferation (Yang et al., 2011). This line of evidence

establishes PKM2 as a unique and key regulator of cancer devel-

opment by virtue of its coordination of ATP generation, macro-

molecular syntheses, and gene transcription via both metabolic

and nonmetabolic functions.

EGFR activation results in the nuclear translocation of PKM2,

but not PKM1 (Yang et al., 2011), which restricts the accessibility

of PKM1 to histone. PEP participates in the phosphorylation of

H11 in phosphoglycerate mutase (PGAM1), but not through

PKM2 acting as a PGAM1 kinase (Vander Heiden et al., 2010).

Given that PKM2 phosphorylates Stat3 at Y705 (to activate tran-

scription of MEK5) (Gao et al., 2012) and histone H3 at T11,



Figure 7. PKM2 Regulates Gene Expression by H3-T11 Phosphory-

lation

EGFR activation results in nuclear translocation of PKM2 that binds to gene

promoter regions, where PKM2 phosphorylates H3-T11, leading to HDAC3

disassociation from the promoters and subsequent acetylation of histone H3,

transcription of genes, cell-cycle progression, and cell proliferation.
PKM2 is apparently a dual-specificity protein kinase, acting as

both a tyrosine protein kinase and a serine/threonine protein

kinase. It has been reported that histone H3-T11 can be phos-

phorylated by several protein kinases (Shimada et al., 2008;

Metzger et al., 2008; Preuss et al., 2003). Dlk/DAPK3/ZIPK phos-

phorylates H3-T11 in mitosis. However, the role of H3-T11 phos-

phorylation in mitosis is not clear (Preuss et al., 2003). Basal

Chk1 activity was reported for phosphorylation of H3-T11 in

interphase, and DNA damage, which phosphorylates and acti-

vates Chk1, causes the dissociation of Chk1 from chromatin

and H3-T11 dephosphorylation (Shimada et al., 2008). In addi-

tion, androgen stimulation enhances H3-T11 phosphorylation

in prostate cancer cells in a PRK1/PKN1-dependent manner

(Metzger et al., 2008). However, depletion of DAPK3, Chk1, or

PRK1/PKN1 did not affect EGF-induced H3-T11 phosphoryla-

tion, further supporting the idea that nuclear translocation of

PKM2 induced by EGFR activation plays a critical role in H3-

T11 phosphorylation, which promotes G1-S phase transition

and cell-cycle progression.

EGFR activation results in GSK-3b-independent b-catenin

transactivation by mechanisms that are distinct from Wnt-

dependent canonical signaling (Fang et al., 2007; Ji et al.,

2009; Lu et al., 2003; Lu and Hunter, 2004; Yang et al., 2011).

EGFR activation results in nuclear translocation of PKM2,

which interacts with Y333-phosphorylated b-catenin (Yang

et al., 2011). This protein complex binds to the CCND1 and

MYC promoter regions, where PKM2 phosphorylates H3-T11,

leading to HDAC3 disassociation from the promoters and

subsequent acetylation of histone H3, transcription of genes,

cell-cycle progression, and cell proliferation (Figure 7). The

finding that PKM2-dependent H3-T11 phosphorylation, which

regulates total cellular histone H3 acetylation levels, is required
for tumor cell proliferation and tumorigenesis and that the

levels of H3-T11 phosphorylation and nuclear PKM2 (Yang

et al., 2011) correlate with grades of glioma malignancy and

prognosis may provide amolecular basis for improved diagnosis

and treatment of tumors with activated EGFR and upregulated

PKM2.

EXPERIMENTAL PROCEDURES

Materials

Rabbit polyclonal antibodies recognizing phosphohistone H3 T11, phos-

phohistone H3 S10, phospho-EGFR Y1172, PKM1, PKM2, and c-Myc were

obtained from Signalway Biotechnology (Pearland, TX). Rabbit polyclonal

antibodies recognizing histone H3, histone H2A, trimethyl histone H3 K36,

trimethyl histone H3 K79, and phosphohistone H3 T11 were obtained from

Abcam (Cambridge, MA). Mouse antibodies recognizing phosphotyrosine

and phosphoserine were obtained from BD Biosciences (Bedford, MA).

Polyclonal antibodies for Chk1, PKN1, cyclin D1, and PCNA and a monoclonal

antibody for phosphothreonine were purchased from Santa Cruz Biotech-

nology (Santa Cruz, CA). EGF and mouse monoclonal antibodies for Flag,

His, DAPK3, and tubulin were purchased from Sigma (St. Louis, MO). A poly-

clonal antibody specific for acetylated histone H3 K9, a monoclonal antibody

for HDAC3, hygromycin, puromycin, G418, DNase-free RNase A, and propi-

dium iodide were purchased from EMD Biosciences (San Diego, CA). HyFect

transfection reagents were from Denville Scientific (Metuchen, NJ). GelCode

Blue Stain Reagent was obtained from Pierce (Rockford, IL). Purified histone

H3 was from New England Biolab (Ipswich, MA).

Cells and Cell Culture Conditions

U87, U87/EGFR, and U251 GBM cells and 293T cells were maintained in

Dulbecco’smodified Eagle’s medium (DMEM) supplementedwith 10%bovine

calf serum (HyClone, Logan, UT). Human primary GSC11 GBM cells were

maintained in DMEM/F-12 50/50 supplemented with B27, EGF (10 ng/ml),

and bFGF (10 ng/ml). Cell cultures were made quiescent by growing them to

confluence, and the medium was replaced with fresh medium containing

0.5% serum for 1 day. EGF at a final concentration of 100 ng/ml was used

for cell stimulation.

Transfection

Cells were plated at a density of 4 3 105/60 mm dish at 18 hr before

transfection. Transfection was performed as previously described (Xia et al.,

2007).

Mass Spectrometry Analysis

An in vitro PKM2-phosphorylated sample of purified H3 was exhaustively

acetylated with acetic anhydride and triethylamine in acetonitrile, evaporated

to dryness, and then resuspended in 50 mM ammonium bicarbonate buffer

containing Rapigest (Waters Corp, MA). The sample was heated to 95�C for

10 min and then allowed to cool; 100 ng of sequencing-grade modified trypsin

(Promega, Madison, WI) was added. The digestion proceeded overnight at

37�C and was analyzed by LC-MS/MS on an Obitrap-XL mass spectrometer

(Thermo Fisher Scientific, Waltham, MA).

Proteins were identified by a database search of the fragment spectra

against the National SwissProt protein database (EBI) using Mascot v.2.3

(Matrix Science, London, UK) and Sequest (v.1.20) via Proteome Discoverer

v.1.3 (Thermo Fisher Scientific). Phosphopeptide matches were analyzed by

using PhosphoRS implemented in Proteome Discoverer and manually curated

(Taus et al., 2011).

Immunoprecipitation and Immunoblotting Analysis

Extraction of proteins with a modified buffer from cultured cells was followed

by immunoprecipitation and immunoblotting with corresponding antibodies

as described previously (Lu et al., 1998). Protein levels were quantified

through densitometry. Data represent the mean ± SD of three independent

experiments.
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Cell Proliferation Assay

A total of 23 104 cells were plated and counted 7 days after seeding in DMEM

with 0.5% bovine calf serum. Data represent the mean ± SD of three indepen-

dent experiments.

DNA Constructs and Mutagenesis

Polymerase chain reaction (PCR)-amplified human PKM2 was cloned into

pcDNA3.1/hygro (+) vector between BamH I and Not I. pcDNA 3.1/hygro

(+)-PKM2 K367M, pcDNA 3.1/hygro (+)-histone H3 K4R, -K9R, -T3A, -T6A,

and -T11A were made by using the QuikChange site-directed mutagenesis

kit (Stratagene, La Jolla, CA). pcDNA 3.1-rPKM2 contains non-sense muta-

tions of C1170T, C1173T, T1174C, and G1176T.

The pGIPZ control was generated with control oligonucleotide GCTTCT

AACACCGGAGGTCTT. pGIPZ PKM2 shRNA was generated with CATCT

ACCACTTGCAATTA oligonucleotide targeting exon 10 of the PKM2 tran-

script. pGIPZ PKM1/2 shRNA was generated with GATTATCAGCAAAATCG

AG. pGIPZ histone H3 shRNA was generated with CCTATGAAAGGATG

CAATA. pGIPZ Chk1 shRNAwas generated with GCAACAGTATTTCGGTATA.

pGIPZ DAPK3 shRNA was generated with AAGCAGGAGACGCTCACCA.

pGIPZ PKN1 shRNA was generated with CCCGGACCACGGGTGACAT.

Flow Cytometric Analysis

A total of 1 3 106 treated cells were fixed in cold 70% ethanol for 3 hr, spun

down, and incubated for 1 hr at 37�C in PBS with DNase-free RNase A

(100 mg/ml) and propidium iodide (50 mg/ml). Cells were then analyzed with

use of a fluorescence-activated cell sorter (FACS). Data represent the mean

± SD of three independent experiments.

Purification of Recombinant Proteins

The WT and mutants of His-PKM2, His-PKM1, and His-histone H3 and

GST-HDAC3 were expressed in bacteria and purified as described previously

(Xia et al., 2007).

In Vitro Kinase Assays

The kinase reactions were performed as described previously (Fang et al.,

2007; Vander Heiden et al., 2010). In brief, the bacterially purified recombinant

PKM2 (200 ng) were incubated with histone H3 (100 ng) with kinase

buffer (50 mM Tris-HCl [pH 7.5], 100 mM KCl, 50 mM MgCl2, 1 mM Na3VO4,

1 mM DTT, 5% glycerol, 0.5 mM PEP, and 0.05 mM FBP) in 25 ml at 25�C
for 1 hr. The reactions were terminated by the addition of sodium dodecyl

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) loading buffer and

heated to 100�C. The reaction mixtures were then subjected to SDS-PAGE

analyses.

ChIP Assay

ChIP was performed by using SimpleChIP Enzymatic Chromatin IP Kits.

Chromatin prepared from cells (in a 10 cm dish) was used to determine total

DNA input and for overnight incubation with the specific antibodies or with

normal rabbit or mouse immunoglobulin G. The human CCND1 promoter-

specific primers used in PCR were 50-GGGGCGATTTGCATTTCTAT-30

(forward) and 50-CGGTCGTTGAGGAGGTTGG-30 (reverse). MYC promoter-

specific primers were 50-CAGCCCGAGACTGTTGC-30 (forward) and 50-CAGA

GCGTGGGATGTTAG-30 (reverse).

Immunofluorescence Analysis

Immunofluorescence analyses were performed as described previously (Fang

et al., 2007).

Immunohistochemical Analysis

Mouse tumor tissues were fixed and prepared for staining. The specimens

were stainedwithMayer’s hematoxylin and subsequently with eosin (Biogenex

Laboratories, San Ramon, CA). Afterward, the slides weremounted with use of

a Universal Mount (Research Genetics Huntsville, AL).

The tissue sections from paraffin-embedded human GBM and astrocytoma

specimens were stained with antibodies against phosphohistone H3 T11,

PKM2, or nonspecific IgG as a negative control. We quantitatively scored

the tissue sections according to the percentage of positive cells and staining
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intensity, as previously defined (Ji et al., 2009). We assigned the following

proportion scores: 0 if 0% of the tumor cells showed positive staining, 1 if

0% to 1% of cells were stained, 2 if 2% to 10% were stained, 3 if 11% to

30% were stained, 4 if 31% to 70% were stained, and 5 if 71% to 100%

were stained. We rated the intensity of staining on a scale of 0 to 3: 0, negative;

1, weak; 2, moderate; and 3, strong. We then combined the proportion and

intensity scores to obtain a total score (range, 0–8), as described previously

(Ji et al., 2009). Scores were compared with overall survival, defined as the

time from date of diagnosis to death or last known date of follow-up. All

patients received standard adjuvant radiotherapy after surgery, followed by

treatment with an alkylating agent (temozolomide in most cases). The use of

human brain tumor specimens and the database was approved by the Institu-

tional Review Board at MD Anderson Cancer Center. Data represent the

mean ± SD of 45 stained GBM specimens and 30 stained astrocytoma

specimens.

Statistical Analysis

We determined the significance of differences in the human glioma data using

Pearson’s correlation test and Student’s t test (two-tailed). p < 0.05 was

considered to be significant.

Intracranial Injection

We intracranially injected 53 105 GBM cells (in 5 ml of DMEM per mouse) with

endogenous histone H3 depletion and reconstituted expression of histone H3

WT or T11V into 4-week-old female athymic nude mice. The intracranial injec-

tions were performed as described in a previous publication (Gomez-Manzano

et al., 2006). Seven mice per group in each experiment were included. Animals

injected with U87/EGFRvIII or GSC 11 cells were sacrificed 14 or 30 days after

glioma cell injection, respectively. The brain of each mouse was harvested,

fixed in 4% formaldehyde, and embedded in paraffin. Tumor formation and

phenotype were determined by histological analysis of hematoxylin and

eosin staining (H&E)-stained sections. Data represent the means ± SD of

seven mice.

Quantitative Real-Time PCR

Total RNA was extracted with use of an RNA High-purity Total RNA Rapid

Extraction Kit (Signalway Biotechnology). cDNA was prepared by using

oligonucleotide (dT), random primers, and a Thermo Reverse Transcription

kit (Signalway Biotechnology). Quantitative real-time PCR analysis was per-

formed using 2 3 SIBR real-time PCR Premixture (Signalway Biotechnology)

under the following conditions: 5 min at 95�C followed by 40 cycles at 95�C
for 30 s, 55�C for 40 s, and 72�C for 1 min using an ABI Prism 7700 sequence

detection system. Data were normalized to expression of a control gene

(b-actin) for each experiment. Data represent the mean ± SD of three indepen-

dent experiments.

The following primer pairs were used for quantitative real-time PCR:

CCND1, 50-GCGAGGAACAGAAGTGC-30 (forward) and 50-GAGTTGTCGGTG

TAGATGC-30 (reverse); MYC, 50-ACACCCTTCTCCCTTCG-30 (forward) and

50-CCGCTCCACATACAGTCC-30 (reverse); b-actin, 50-ATGGATGACGATATC

GCTGCGC-30 (forward) and 50-GCAGCACAGGGTGCTCCTCA-30 (reverse).

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures and can be found with this

article online at http://dx.doi.org/10.1016/j.cell.2012.07.018.

ACKNOWLEDGMENTS

This work was supported by National Cancer Institute grants 2R01CA109035

(Z.L.), 5 P50 CA127001-03, and CA16672 (Cancer Center Support Grant);

a research grant (RP110252; Z.L.) from the Cancer Prevention and Research

Institute of Texas (CPRIT); an American Cancer Society Research Scholar

Award RSG-09-277-01-CSM (Z.L.); and a Sister Institution Network Fund

from The University of Texas MD Anderson Cancer Center (Z.L.). T.H. is

a Frank and Else Schilling American Cancer Society Professor, and work in

his group was supported by National Cancer Institute grant 2R01CA082683.

http://dx.doi.org/10.1016/j.cell.2012.07.018


Received: February 4, 2012

Revised: May 22, 2012

Accepted: June 6, 2012

Published: August 16, 2012

REFERENCES

Altenberg, B., and Greulich, K.O. (2004). Genes of glycolysis are ubiquitously

overexpressed in 24 cancer classes. Genomics 84, 1014–1020.

Baek, S.H. (2011). When signaling kinases meet histones and histone modi-

fiers in the nucleus. Mol. Cell 42, 274–284.

Cairns, R.A., Harris, I.S., and Mak, T.W. (2011). Regulation of cancer cell

metabolism. Nat. Rev. Cancer 11, 85–95.

Christofk, H.R., Vander Heiden, M.G., Harris, M.H., Ramanathan, A., Gerszten,

R.E.,Wei, R., Fleming,M.D., Schreiber, S.L., and Cantley, L.C. (2008a). TheM2

splice isoform of pyruvate kinase is important for cancer metabolism and

tumour growth. Nature 452, 230–233.

Christofk, H.R., Vander Heiden, M.G., Wu, N., Asara, J.M., and Cantley, L.C.

(2008b). Pyruvate kinase M2 is a phosphotyrosine-binding protein. Nature

452, 181–186.

Dombrauckas, J.D., Santarsiero, B.D., and Mesecar, A.D. (2005). Structural

basis for tumor pyruvate kinase M2 allosteric regulation and catalysis.

Biochemistry 44, 9417–9429.

Fang, D., Hawke, D., Zheng, Y., Xia, Y., Meisenhelder, J., Nika, H., Mills, G.B.,

Kobayashi, R., Hunter, T., and Lu, Z. (2007). Phosphorylation of beta-catenin

by AKT promotes beta-catenin transcriptional activity. J. Biol. Chem. 282,

11221–11229.

Furnari, F.B., Fenton, T., Bachoo, R.M., Mukasa, A., Stommel, J.M., Stegh, A.,

Hahn, W.C., Ligon, K.L., Louis, D.N., Brennan, C., et al. (2007). Malignant

astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev. 21,

2683–2710.

Gao, X., Wang, H., Yang, J.J., Liu, X., and Liu, Z.R. (2012). Pyruvate kinase M2

regulates gene transcription by acting as a protein kinase. Mol. Cell 45,

598–609.

Gomez-Manzano, C., Alonso, M.M., Yung, W.K., McCormick, F., Curiel, D.T.,

Lang, F.F., Jiang, H., Bekele, B.N., Zhou, X., Alemany, R., and Fueyo, J. (2006).

Delta-24 increases the expression and activity of topoisomerase I and

enhances the antiglioma effect of irinotecan. Clin. Cancer Res. 12, 556–562.

Hoshino, A., Hirst, J.A., and Fujii, H. (2007). Regulation of cell proliferation by

interleukin-3-induced nuclear translocation of pyruvate kinase. J. Biol.

Chem. 282, 17706–17711.

Hsu, P.P., and Sabatini, D.M. (2008). Cancer cell metabolism: Warburg and

beyond. Cell 134, 703–707.

Ji, H., Wang, J., Nika, H., Hawke, D., Keezer, S., Ge, Q., Fang, B., Fang, X.,

Fang, D., Litchfield, D.W., et al. (2009). EGF-induced ERK activation promotes

CK2-mediated disassociation of alpha-Catenin from beta-Catenin and trans-

activation of beta-Catenin. Mol. Cell 36, 547–559.

Koppenol, W.H., Bounds, P.L., and Dang, C.V. (2011). Otto Warburg’s

contributions to current concepts of cancer metabolism. Nat. Rev. Cancer

11, 325–337.

Lee, J., Kim, H.K., Han, Y.M., and Kim, J. (2008). Pyruvate kinase isozyme type

M2 (PKM2) interacts and cooperates with Oct-4 in regulating transcription. Int.

J. Biochem. Cell Biol. 40, 1043–1054.

Lee, J.S., Smith, E., and Shilatifard, A. (2010). The language of histone cross-

talk. Cell 142, 682–685.

Lu, Z. (2012). Nonmetabolic functions of pyruvate kinase isoform M2 in

controlling cell cycle progression and tumorigenesis. Chin. J. Cancer 31, 5–7.

Lu, Z., and Hunter, T. (2004). Wnt-independent beta-catenin transactivation in

tumor development. Cell Cycle 3, 571–573.

Lu, Z., Liu, D., Hornia, A., Devonish, W., Pagano, M., and Foster, D.A. (1998).

Activation of protein kinase C triggers its ubiquitination and degradation. Mol.

Cell. Biol. 18, 839–845.
Lu, Z., Ghosh, S., Wang, Z., and Hunter, T. (2003). Downregulation of caveolin-

1 function by EGF leads to the loss of E-cadherin, increased transcriptional

activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell 4,

499–515.

Luo, W., Hu, H., Chang, R., Zhong, J., Knabel, M., O’Meally, R., Cole, R.N.,

Pandey, A., and Semenza, G.L. (2011). Pyruvate kinase M2 is a PHD3-stimu-

lated coactivator for hypoxia-inducible factor 1. Cell 145, 732–744.

Majumder, P.K., Febbo, P.G., Bikoff, R., Berger, R., Xue, Q., McMahon, L.M.,

Manola, J., Brugarolas, J., McDonnell, T.J., Golub, T.R., et al. (2004). mTOR

inhibition reverses Akt-dependent prostate intraepithelial neoplasia through

regulation of apoptotic and HIF-1-dependent pathways. Nat. Med. 10,

594–601.

Mazurek, S. (2007). Pyruvate kinase typeM2: a key regulator within the tumour

metabolome and a tool for metabolic profiling of tumours. Ernst Schering

Found. Symp. Proc. 2007, 99–124.

Mazurek, S., Boschek, C.B., Hugo, F., and Eigenbrodt, E. (2005). Pyruvate

kinase type M2 and its role in tumor growth and spreading. Semin. Cancer

Biol. 15, 300–308.
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